4° HORIZONS FOR DRAVET SYNDROME

INTERNATIONAL SYMPOSIUM
“DRAVET SYNDROME AND OTHER SODIUM CHANNEL RELATED ENCEPHALOPATHIES”

15-16 MARCH 2018, VERONA | PALAZZO DELLA GRAN GUARDIA

info@horizonsdravet.eu · www.horizonsdravet.eu

Abstract Book
Footprints characterisation in patients with Dravet Syndrome

R. Di Marco¹,², G. Bellon¹,², M.G. Benedetti³, C. Boniver¹, F. Darra⁴, E. Piazza⁵, F. Ragona⁵, B. Dalla Bernardina⁶, M. Vecchi¹, S. Masiero¹,², A. Del Felice¹,²

1 University Hospital of Padova, Padova, Italy
2 University of Padova, Padova, Italy
3 Istituto Ortopedico Rizzoli, Bologna, Italy
4 Azienda Ospedaliero-Universitaria, Verona, Italy
5 IRCCS Istituto Neurologico C. Besta, Milano, Italy
6 Centro di Ricerca Epilessia in età pediatrica, Verona, Italy

Introduction
In Dravet syndrome gait abnormalities have been described only by observational video analysis [1]. Baropodometry might be used to objectify abnormalities of walking patterns [2].

Methodology
Nine Dravet patients and seven control subjects were asked to walk self-paced. A pressure matrix recorded five right and left footprints, which were retained for the analysis, and masked to calculate the contact area, averaged force, contact time, maximum averaged pressure, and other parameters of interest for forefoot, midfoot, rear foot, lateral-foot, medial foot areas, and the whole foot. Differences between the parameters calculated for patients and controls were statistically tested.

Results and Discussion
Our data highlights a reduced force exchanged with the ground at the rearfoot, identifying defective propulsion at the knee and the ankle, compensated by trunk anteposition, that shifts forward the Centre of Pressure and increases the forces applied by fore- and midfoot to the ground. The dominant foot seems to provide more stable support, as previously reported in healthy subjects [3].

Conclusion
According to our results baropodometry can be considered an alternative to identify major gait pattern abnormalities.

Bibliography
FOOTPRINTS CHARACTERISATION IN PATIENTS WITH DRAVET SYNDROME

INTRODUCTION
Dravet Syndrome (DS) is a rare childhood disease characterised by recurrent polymorphic seizures, intellectual disability and behavioural disturbances, ataxia, myoclonus and eventually pyramidal or extrapyramidal signs. Gait abnormalities have been described only by observational video analysis [1]. Baropodometry might be a useful tool to objectify, even on scarcely collaborative subjects, abnormalities of walking patterns [2]. This study aims at characterizing foot pressure maps of subjects with Dravet Syndrome, comparing the results with a control group.

METHODS
Participants
9 patients (DS):
14.7 ± 6.0 years-old, BMI: 19.5 ± 3.6 kg/m², foot-size: 23.4 ± 2.4 cm
7 healthy subjects (CS):
15.1 ± 10.5 years-old, BMI: 16.9 ± 5.6 kg/m², foot-size: 22.3 ± 3.7 cm

Data collection & processing
- Participants walked self-paced
- Pressure matrix (emded-x4000, 100 Hz, range 10-1270 kPa)
- Five right and five left footprints recorded
- Automatic masking to define the regions of interest in Fig. 3

Variables:
- Contact area (CA, cm²)
- Averaged force (AF, %BW)
- Contact time (CT, stance and ms)
- Max averaged pressure (AP, kPa)
- Pressure peak (PP, kPa)
- Maximum force (MF, %BW)

RESULTS
Only variables that reported significant differences are shown

DISCUSSION
Our data characterise foot pressure maps in subjects with Dravet syndrome, highlighting a reduced force exchanged with the ground at the rear foot. This finding is in line with results obtained with conventional gait analysis, which identifies defective power generation at the knee and the ankle (unpublished data from the University Hospital Gait Lab). Defective propulsion is compartmentalised by trunk anteposition, which shifts forward the Centre of Pressure and increases the force applied by fore- and midfoot to the ground (also linked to the typical flat feet of DS patients). In addition, a marked lateralization of balance function emerged, with dominant right foot providing more stable support than left foot. This observation has been previously reported in healthy subjects [3,4], but a very few data exists on pathological conditions. Overall increased variability in pressure and averaged forces, more evident on the left side, confirms the clinical sign of ataxia.

CONCLUSION
Baropodometry is useful to identify major gait pattern abnormalities in hardly compliant subjects with DS (or possibly with other behavioral or cognitive disturbances), helping with the design of subject-specific rehabilitation programs.

ACKNOWLEDGEMENTS
The presentation of this study is supported by the Italian Society of Movement Analysis in Clinics.

REFERENCES